FAQs

This con­tent has been writ­ten col­lab­o­ra­tive­ly by the Project Part­ners of Alice Springs Future Grid, led by the Intyal­heme Cen­tre for Future Ener­gy. Please sub­mit your ques­tions, which will be answered in due course and shared on this plat­form if rel­e­vant and appro­pri­ate. You will be noti­fied via email when the answer is post­ed. Terms and con­di­tions are detailed on the sub­mit a ques­tion page. Fur­ther FAQs specif­i­cal­ly about the Solar Con­nect Vir­tu­al Pow­er Plant tri­al are addressed in this doc­u­ment

Can’t find what you’re after? Send us a question!


What was the Solar Connect VPP trial?

Solar Connect was a townwide solar and battery trial linking households via a Virtual Power Plant (VPP). House­holds in the VPP shared solar and battery power in ways that benefited the Alice Springs grid and informed the opportunities for the next generation of more sustainable energy solutions.

What happened during the Solar Connect VPP trial?

During the trial, participants had access to an energy monitoring app, giving them greater visibility over their energy use.

They also received monthly updates on their household’s performance in the VPP from Jacana Energy, an Alice Springs Future Grid project partner. A quarterly update showed the performance of the VPP itself, so participants could see how their participation fit into the bigger picture.

Future Grid’s Community Engagement team at ALEC stayed connected with surveys, updates, focus groups, details of events and other opportunities.

Solar battery participants also participated in a trial tariff that scheduled their batteries to charge during the middle of the day, for usage in the afternoon and evening.

Will the Future Grid project have an impact on low socio-economic demographics, people in town camps, or remote communities?

In partnership with Territory Housing, the Alice Springs Future Grid installed 15 solar battery systems on public housing to ascertain the impact of public housing energy consumption behaviour into the Energy Grid.

It was recognised that solar has the effect of enabling those with the financial means to do so to reduce their power bills, while this project allowed these benefits to be shared with tenants. In addition, the Arid Lands Environment Centre led a Low-Socioeconomic study that presents baseline information on the challenges facing this section of the community in accessing direct benefits from renewable energy.

If I get an electric vehicle (EV) do I need 3-phase power at my house to charge it? How much does it cost to charge each day?

You don’t need 3-phase power to charge an EV. In fact, you can purchase charging cables that plug into a standard domestic socket. The most common way to charge an EV is via a "type 2" charger, and many EV drivers will opt to have a charging point installed in their home. A 3-phase connection will charge your car more quickly. A single phase type 2 connection will be slower than 3-phase but faster than your standard household sockets. Your local solar installer or electrician can assist with questions specific to your case. The cost of the charge will depend on the general cost of electricity, the capacity of the vehicle’s batteries, and whether you’re incorporating solar power. A fuel cost savings calculator can be found on myelectriccar.com.au, with plentiful similar resources available elsewhere online.

Are there charging stations along the Stuart Highway to Adelaide and Darwin? Are they fast chargers?

There are enough chargers along the highway to comfortably travel the length of Australia. There are a surprising number of charging points all over Australia, including in some incredibly remote locations, such as Kiwirrkurra, which is one of the most remote settlements on the planet! It is easy to view the full range of charging points on the app PlugShare.

How does this project differ from what is happening in South Australia or anywhere else in the world?

There have been other projects around Australia carrying out investigations in many similar areas to Future Grid. The difference is that Future Grid looked at a series of interventions in aggregate and how they could integrate as a system on a technical, economic, and regulatory basis. This is what made Future Grid fundamentally different; it brought public utilities together with leading industry experts, and local organisations. We collaborated in a way that was simply not possible in other locations. For comparison, if we look to WA; Horizon Power has demonstrated many of the technical interventions we were working towards, but they are doing it in the context of being a vertically integrated energy supply company, so its activities don’t require complex engagement with other entities. In other areas, such as South Australia, there are fundamental differences in the market structure, which provide economic signals that are not available in the NT. What Future Grid did, which was different to other projects, is to work out how to bring parties and interventions together to collaborate.

What is the project’s position on vehicle-to-grid technology and electric vehicles in general?

The Future Grid car was an electric vehicle (a Nissan Leaf) and there were individuals in the team and community who were highly enthused about this technology. However, operating within a constrained budget and timeline, electric vehicles or related trials were not considered as part of the project. The team designed a series of interdependent activities that served to consider immediate issues in the system and support further renewable energy penetration into the Alice Springs grid in a cost-effective and realistic way. These interventions made use of and optimise existing grid infrastructure, which is a valuable public asset. The Future Grid team always welcomed any future or parallel projects that supported the increased use of electric vehicles in Alice Springs or focused on the integration of this technology as another means of supporting the grid.


Can’t find what you’re after? Send us a question!