FAQs

This con­tent has been writ­ten col­lab­o­ra­tive­ly by the Project Part­ners of Alice Springs Future Grid, led by the Intyal­heme Cen­tre for Future Ener­gy. Please sub­mit your ques­tions, which will be answered in due course and shared on this plat­form if rel­e­vant and appro­pri­ate. You will be noti­fied via email when the answer is post­ed. Terms and con­di­tions are detailed on the sub­mit a ques­tion page. Fur­ther FAQs specif­i­cal­ly about the Solar Con­nect Vir­tu­al Pow­er Plant tri­al are addressed in this doc­u­ment

Can’t find what you’re after? Send us a question!


What was the Solar Connect VPP trial?

Solar Connect was a townwide solar and battery trial linking households via a Virtual Power Plant (VPP). House­holds in the VPP shared solar and battery power in ways that benefited the Alice Springs grid and informed the opportunities for the next generation of more sustainable energy solutions.

What is a VPP?

A Vir­tu­al Pow­er Plant (VPP) is typ­i­cal­ly a col­lec­tion of solar and bat­tery stor­age sys­tems that work togeth­er to allow coordinated control of their energy.

VPPs use smart technology to control the energy flow to and from the grid on demand – benefitting the household, grid and the community.

What was the timeline for the Solar Connect VPP trial?

The trial became operational in October 2022 and ended in October 2023.

Why was the Solar Connect VPP trial necessary?

Alice Springs Future Grid created the Northern Territory’s first residential Virtual Power Plant (VPP). The trial looked at how a VPP can help keep the grid stable while increasing the amount of clean energy in the Alice Springs power system.

The VPP was part of a suite of innovative trials, models and investigations that looked at how to keep the Alice Springs network within voltage limits, reduce the reliance on gas power generation, and help the Northern Territory to reach 50% renewable energy by 2030.

What does the big BESS battery at Ron Goodin power station actually do?

The Battery Energy Storage System (BESS) in Alice Springs is designed to provide grid stability services. This is much needed, as the town has a high proportion of rooftop solar PV, which can create challenges in the grid during periods of high cloud coverage, requiring thermal generation to react as quickly as possible to pick up the slack. In these instances, the BESS can almost immediately support the grid while thermal generation ramps up or down. If it were to be used purely for storage, the battery would last about 40 minutes. Proportional to the size of the Alice Springs grid, it is the biggest battery in Australia. This perhaps illustrates why centralised battery storage alone isn’t a viable solution to support high renewable penetration in a town like Alice, just yet.

If I have an old PV system, can I retrofit a battery onto that or is it cheaper to replace everything with a new system?

Residential batteries can be fitted to most households with existing PV systems. Replacing the entire system will depend on the age of the infrastructure – panels and inverter primarily. Further information should be sought from accredited CEC installers, or alternatively see websites such as Solarquotes to gain a better understanding of the various technicalities.

Can I go fully off-grid in town? What will it cost me?

With solar PV and batteries it is technically possible to go off-grid, but Alice Springs residents would need a very big battery or backup diesel generator to cover occasions where there is limited sun for consecutive days. The most common option is to install PV and BESS in proportion to household needs, and let the grid come to the rescue when its needed. In the future, plentiful PV and BESS will create a very resilient system, because it’s highly unlikely that they could all fail at once. For most people it is not financially viable to go off-grid, but as centralised energy generation incorporates a growing proportion of renewables, it means everyone will eventually be provided with cleaner energy.

What does it cost to install a battery at my house if I already have PV?

Quotes will depend on your particular specifications and should always be sought from a Clean Energy Council accredited installer.

How will lessons learnt in the project be used in the future? And by whom?

Knowledge sharing is a key focus for (funding agency) ARENA, and the Future Grid project has a prominent knowledge sharing plan, delivery of which is led by CSIRO. Reports generated through the project are hosted on the ARENA Project Page for Future Grid. It is recognised that lessons learnt in Alice Springs can be scaled-up and applied to other grids, such as the Darwin-Katherine Interconnected System (DKIS) and the National Electricity Market on Australia’s East Coast. The project’s main target audience is industry and government, so it is expected these entities will be the primary conduit through which lessons learnt in Alice Springs are applied elsewhere.

At a national and global level, how important is the Alice Springs Future Grid project and what outcomes might be applicable to other grids?

The Future Grid project (and the Roadmap to 2030) has significant value nationally because some of the research and findings demonstrated in the Roadmap, set out ways different parts of the power system will need to work together in the future. A key characteristic of Alice Springs is that it is small enough that the opportunity exists to test and validate interventions, but big enough that the results have direct applicability across a range of different systems and grids in Australia. To this end, Alice Springs is sometimes said to be “small enough to manage but big enough to matter”.

Why can’t we just put in a big battery?

Alice Springs is already home to a large-scale Battery Energy Storage System (BESS) owned by Territory Generation and installed at the Ron Goodin Power Station. The BESS was commissioned in 2018 and at the time was the largest battery, proportional to the grid it served, in Australia. The BESS is 5MW and cost about $8m. It is optimised for grid support services (such as inertia, as outlined elsewhere) and is not sufficient to support the grid in terms of energy storage. If optimised to provide energy storage rather than grid support the battery could service the energy needs of Alice Springs for no longer than 20 minutes.

The Roadmap to 2030 has considered where new battery energy storage systems could be placed and their functions. It is likely that at least three systems would be needed, at strategic locations around town to support the grid.


Can’t find what you’re after? Send us a question!