FAQs

This con­tent has been writ­ten col­lab­o­ra­tive­ly by the Project Part­ners of Alice Springs Future Grid, led by the Intyal­heme Cen­tre for Future Ener­gy. Please sub­mit your ques­tions, which will be answered in due course and shared on this plat­form if rel­e­vant and appro­pri­ate. You will be noti­fied via email when the answer is post­ed. Terms and con­di­tions are detailed on the sub­mit a ques­tion page. Fur­ther FAQs specif­i­cal­ly about the Solar Con­nect Vir­tu­al Pow­er Plant tri­al are addressed in this doc­u­ment

Can’t find what you’re after? Send us a question!


Do gas generators need to stay operating regardless of whether there's "too much solar" in the system?

While this statement is an oversimplification of the process, it is true that at certain times of day and during certain periods of the year, not all the solar power being generated can be used by the grid. The Alice Springs electricity system is heavily reliant upon gas generation – not only for power, but also to provide essential system services (ESS) such as voltage control, frequency, and inertia. These services can be provided by technical solutions like batteries, but at this stage this is a prohibitively expensive means of addressing the problem in its entirety. The aim of the Alice Springs Future Grid’s Roadmap to 2030 is to provide information on how more renewables can be tied into the use of gas generators at the main power stations.

Does Future Grid consider materials sustainability and technology obsolescence?

It’s not a core focus of the project, however the project is aware of the issue and acknowledges its significance as part of the longer-term deployment of renewables.

The Intyalheme Centre for Future Energy was involved in a study led by Charles Darwin University which investigated the problems of solar waste. The study recognised that solar panels were generally not designed to be repaired or dismantled, and this was an area for the industry to consider. The study also found there was an unwillingness to pass on recycling costs to the consumer. The researchers recommended a collaborative approach to addressing this issue, with responsibility shared between government, industry and consumers. Amongst other recommendations, the report said solar panels should not be landfilled; and policy or guidelines around collection, transport, stockpiling and disposal should be clarified. The full report can be read on the Alice Springs Future Grid knowledge bank.

In addition, numerous studies, including reports from Yale University, have found that while there are greenhouse gas emissions associated with the production of low-carbon energy technologies such as solar panels and wind turbines; the impacts pale in comparison with the emissions prevented through the displacement of fossil fuel power generation. It takes around two years to pay off the “embedded energy” in a solar panel; while the panel itself is likely to produce clean energy for up to 25 years, saving almost 250 tonnes of CO2 over its lifetime.

Will the Future Grid project have an impact on low socio-economic demographics, people in town camps, or remote communities?

In partnership with Territory Housing, the Alice Springs Future Grid installed 15 solar battery systems on public housing to ascertain the impact of public housing energy consumption behaviour into the Energy Grid.

It was recognised that solar has the effect of enabling those with the financial means to do so to reduce their power bills, while this project allowed these benefits to be shared with tenants. In addition, the Arid Lands Environment Centre led a Low-Socioeconomic study that presents baseline information on the challenges facing this section of the community in accessing direct benefits from renewable energy.

What proportion of solar in Alice Springs is from houses, small businesses, Uterne, and big commercial installations?

Alice Springs has predominantly been powered by two power stations operated by Territory Generation: Owen Springs and Ron Goodin. These two power stations consist of a fleet of conventional generators, fuelled by gas or diesel, which are ‘dispatched’ in a manner that ensures supply perfectly matches customer demand every second of the year.

In the 2021‑22 reporting period, total conventional generation capacity was 122.6 MW and operational maximum demand was 48.6 MW, not including requirements for system redundancy. It is noteworthy, however, that while the Ron Goodin power station is aged, it remains available for system redundancy. No definitive retirement date has been announced.

Over recent years, more than 25% of the approximately 9,000 households in Alice Springs have installed DPV on their property rooftops.

The maximum output capacity of all residential DPV systems in Alice Springs is estimated to be 23 MW, and historical generation data suggests in the order of a 9% contribution to overall consumption. Fossil fuel-based generation produced 87% of annual volume and centralised Renewable Generation produced 4%.

What happens to solar panels at the end of their life?

This is a subject of much discussion and study, and is even the focus of a current Australian Renewable Energy Agency (ARENA) funding opportunity. It does pose a looming waste management issue, with the design life of solar panels at 20 to 30 years, and many installed well over a decade ago. The International Renewable Energy Agency (IRENA) estimates there could be 60 to 78 million tons of photovoltaic panel waste accumulated globally by 2050. It also estimates the recyclable materials will be worth $15bn in recoverable value.

It is envisaged that recycling solar panels will create industry and employment opportunities, keep valuable resources out of landfill, help to retain rare elements, and prevent heavy metals leaching into the environment. There are a couple of companies working in this space in Australia.

What does the big BESS battery at Ron Goodin power station actually do?

The Battery Energy Storage System (BESS) in Alice Springs is designed to provide grid stability services. This is much needed, as the town has a high proportion of rooftop solar PV, which can create challenges in the grid during periods of high cloud coverage, requiring thermal generation to react as quickly as possible to pick up the slack. In these instances, the BESS can almost immediately support the grid while thermal generation ramps up or down. If it were to be used purely for storage, the battery would last about 40 minutes. Proportional to the size of the Alice Springs grid, it is the biggest battery in Australia. This perhaps illustrates why centralised battery storage alone isn’t a viable solution to support high renewable penetration in a town like Alice, just yet.

What is the current status of Ron Goodin power station?

Ron Goodin Power Station, located near the centre of Alice Springs, was commissioned in 1973. Some of its generators are the oldest of their type operating in the world. Territory Generation completed an expansion of its Owen Springs Power Station in February 2019, so is transitioning the main generation capability to this location, 26km south of Alice Springs and away from residential areas. Thermal power stations typically have a lifetime of 30-50 years.

Could Alice Springs reach 100% renewables by 2030?

It’s absolutely feasible before 2030 that we can work towards operation at 100% renewable energy at certain times of the day or year. This was a scenario modelled as part of the Roadmap to 2030. However, how frequently we do that and for how long will then become a question of economics and power system stability.

Solar is currently the only commercially viable renewable resource in Central Australia, and to reach 100% solar would require a very large (and prohibitively expensive) battery, to cover the overnight periods. Learning how to provide Essential System Services through renewable energy technologies is crucial to reaching 100% solar during the day. Future Grid's Wind Monitoring Study demonstrated that it may be possible diversify the Alice Springs energy portfolio. Although on its own it may be more expensive than the typical cost of wind generation in Australia, due to the poorer overall wind resources, it has a notable degree of solar/wind resource complementarity. That is the wind resource is most abundant in the late afternoon and evening when solar generation potential is significantly below maximum demand. Other factors that could assist - but are outside the scope of Alice Springs Future Grid - include the adoption of electric vehicles and their integration into the grid, and the development of a green hydrogen industry.

Why can’t we build a pumped hydro plant, using the Heavitree Range?

Alice Springs has a strong history of solar energy innovation and many smart minds have considered this idea. It is accepted that the volume of water required to build a large enough hydro plant is beyond what is feasible. A smaller plant could be built, but it would have no material value.

Any technology that relies upon water in Central Australia is naturally problematic because the region is arid and relies upon a finite source of groundwater. This is why hydrogen isn’t an ideal solution in this area of Australia.

Other considerations relating to ideas of this nature are native title and the Sacred Sites Act, governing the protection of the West MacDonnell ranges and other areas around Alice Springs. However, these cannot be considered as barriers given the absence of technical feasibility for this idea.

Why can’t we just put in a big battery?

Alice Springs is already home to a large-scale Battery Energy Storage System (BESS) owned by Territory Generation and installed at the Ron Goodin Power Station. The BESS was commissioned in 2018 and at the time was the largest battery, proportional to the grid it served, in Australia. The BESS is 5MW and cost about $8m. It is optimised for grid support services (such as inertia, as outlined elsewhere) and is not sufficient to support the grid in terms of energy storage. If optimised to provide energy storage rather than grid support the battery could service the energy needs of Alice Springs for no longer than 20 minutes.

The Roadmap to 2030 has considered where new battery energy storage systems could be placed and their functions. It is likely that at least three systems would be needed, at strategic locations around town to support the grid.


Can’t find what you’re after? Send us a question!