FAQs

This con­tent has been writ­ten col­lab­o­ra­tive­ly by the Project Part­ners of Alice Springs Future Grid, led by the Intyal­heme Cen­tre for Future Ener­gy. Please sub­mit your ques­tions, which will be answered in due course and shared on this plat­form if rel­e­vant and appro­pri­ate. You will be noti­fied via email when the answer is post­ed. Terms and con­di­tions are detailed on the sub­mit a ques­tion page. Fur­ther FAQs specif­i­cal­ly about the Solar Con­nect Vir­tu­al Pow­er Plant tri­al are addressed in this doc­u­ment

Can’t find what you’re after? Send us a question!


What was the Solar Connect VPP trial?

Solar Connect was a townwide solar and battery trial linking households via a Virtual Power Plant (VPP). House­holds in the VPP shared solar and battery power in ways that benefited the Alice Springs grid and informed the opportunities for the next generation of more sustainable energy solutions.

What is a VPP?

A Vir­tu­al Pow­er Plant (VPP) is typ­i­cal­ly a col­lec­tion of solar and bat­tery stor­age sys­tems that work togeth­er to allow coordinated control of their energy.

VPPs use smart technology to control the energy flow to and from the grid on demand – benefitting the household, grid and the community.

What was the timeline for the Solar Connect VPP trial?

The trial became operational in October 2022 and ended in October 2023.

Why was the Solar Connect VPP trial necessary?

Alice Springs Future Grid created the Northern Territory’s first residential Virtual Power Plant (VPP). The trial looked at how a VPP can help keep the grid stable while increasing the amount of clean energy in the Alice Springs power system.

The VPP was part of a suite of innovative trials, models and investigations that looked at how to keep the Alice Springs network within voltage limits, reduce the reliance on gas power generation, and help the Northern Territory to reach 50% renewable energy by 2030.

Does Future Grid consider materials sustainability and technology obsolescence?

It’s not a core focus of the project, however the project is aware of the issue and acknowledges its significance as part of the longer-term deployment of renewables.

The Intyalheme Centre for Future Energy was involved in a study led by Charles Darwin University which investigated the problems of solar waste. The study recognised that solar panels were generally not designed to be repaired or dismantled, and this was an area for the industry to consider. The study also found there was an unwillingness to pass on recycling costs to the consumer. The researchers recommended a collaborative approach to addressing this issue, with responsibility shared between government, industry and consumers. Amongst other recommendations, the report said solar panels should not be landfilled; and policy or guidelines around collection, transport, stockpiling and disposal should be clarified. The full report can be read on the Alice Springs Future Grid knowledge bank.

In addition, numerous studies, including reports from Yale University, have found that while there are greenhouse gas emissions associated with the production of low-carbon energy technologies such as solar panels and wind turbines; the impacts pale in comparison with the emissions prevented through the displacement of fossil fuel power generation. It takes around two years to pay off the “embedded energy” in a solar panel; while the panel itself is likely to produce clean energy for up to 25 years, saving almost 250 tonnes of CO2 over its lifetime.

Will the Future Grid project have an impact on low socio-economic demographics, people in town camps, or remote communities?

In partnership with Territory Housing, the Alice Springs Future Grid installed 15 solar battery systems on public housing to ascertain the impact of public housing energy consumption behaviour into the Energy Grid.

It was recognised that solar has the effect of enabling those with the financial means to do so to reduce their power bills, while this project allowed these benefits to be shared with tenants. In addition, the Arid Lands Environment Centre led a Low-Socioeconomic study that presents baseline information on the challenges facing this section of the community in accessing direct benefits from renewable energy.

What happens to solar panels at the end of their life?

This is a subject of much discussion and study, and is even the focus of a current Australian Renewable Energy Agency (ARENA) funding opportunity. It does pose a looming waste management issue, with the design life of solar panels at 20 to 30 years, and many installed well over a decade ago. The International Renewable Energy Agency (IRENA) estimates there could be 60 to 78 million tons of photovoltaic panel waste accumulated globally by 2050. It also estimates the recyclable materials will be worth $15bn in recoverable value.

It is envisaged that recycling solar panels will create industry and employment opportunities, keep valuable resources out of landfill, help to retain rare elements, and prevent heavy metals leaching into the environment. There are a couple of companies working in this space in Australia.

What does the big BESS battery at Ron Goodin power station actually do?

The Battery Energy Storage System (BESS) in Alice Springs is designed to provide grid stability services. This is much needed, as the town has a high proportion of rooftop solar PV, which can create challenges in the grid during periods of high cloud coverage, requiring thermal generation to react as quickly as possible to pick up the slack. In these instances, the BESS can almost immediately support the grid while thermal generation ramps up or down. If it were to be used purely for storage, the battery would last about 40 minutes. Proportional to the size of the Alice Springs grid, it is the biggest battery in Australia. This perhaps illustrates why centralised battery storage alone isn’t a viable solution to support high renewable penetration in a town like Alice, just yet.

If I have an old PV system, can I retrofit a battery onto that or is it cheaper to replace everything with a new system?

Residential batteries can be fitted to most households with existing PV systems. Replacing the entire system will depend on the age of the infrastructure – panels and inverter primarily. Further information should be sought from accredited CEC installers, or alternatively see websites such as Solarquotes to gain a better understanding of the various technicalities.

Can I go fully off-grid in town? What will it cost me?

With solar PV and batteries it is technically possible to go off-grid, but Alice Springs residents would need a very big battery or backup diesel generator to cover occasions where there is limited sun for consecutive days. The most common option is to install PV and BESS in proportion to household needs, and let the grid come to the rescue when its needed. In the future, plentiful PV and BESS will create a very resilient system, because it’s highly unlikely that they could all fail at once. For most people it is not financially viable to go off-grid, but as centralised energy generation incorporates a growing proportion of renewables, it means everyone will eventually be provided with cleaner energy.

What does it cost to install a battery at my house if I already have PV?

Quotes will depend on your particular specifications and should always be sought from a Clean Energy Council accredited installer.

Why can’t we just put in a big battery?

Alice Springs is already home to a large-scale Battery Energy Storage System (BESS) owned by Territory Generation and installed at the Ron Goodin Power Station. The BESS was commissioned in 2018 and at the time was the largest battery, proportional to the grid it served, in Australia. The BESS is 5MW and cost about $8m. It is optimised for grid support services (such as inertia, as outlined elsewhere) and is not sufficient to support the grid in terms of energy storage. If optimised to provide energy storage rather than grid support the battery could service the energy needs of Alice Springs for no longer than 20 minutes.

The Roadmap to 2030 has considered where new battery energy storage systems could be placed and their functions. It is likely that at least three systems would be needed, at strategic locations around town to support the grid.


Can’t find what you’re after? Send us a question!