FAQs

This con­tent has been writ­ten col­lab­o­ra­tive­ly by the Project Part­ners of Alice Springs Future Grid, led by the Intyal­heme Cen­tre for Future Ener­gy. Please sub­mit your ques­tions, which will be answered in due course and shared on this plat­form if rel­e­vant and appro­pri­ate. You will be noti­fied via email when the answer is post­ed. Terms and con­di­tions are detailed on the sub­mit a ques­tion page. Fur­ther FAQs specif­i­cal­ly about the Solar Con­nect Vir­tu­al Pow­er Plant tri­al are addressed in this doc­u­ment

Can’t find what you’re after? Send us a question!


Does Future Grid consider materials sustainability and technology obsolescence?

It’s not a core focus of the project, however the project is aware of the issue and acknowledges its significance as part of the longer-term deployment of renewables.

The Intyalheme Centre for Future Energy was involved in a study led by Charles Darwin University which investigated the problems of solar waste. The study recognised that solar panels were generally not designed to be repaired or dismantled, and this was an area for the industry to consider. The study also found there was an unwillingness to pass on recycling costs to the consumer. The researchers recommended a collaborative approach to addressing this issue, with responsibility shared between government, industry and consumers. Amongst other recommendations, the report said solar panels should not be landfilled; and policy or guidelines around collection, transport, stockpiling and disposal should be clarified. The full report can be read on the Alice Springs Future Grid knowledge bank.

In addition, numerous studies, including reports from Yale University, have found that while there are greenhouse gas emissions associated with the production of low-carbon energy technologies such as solar panels and wind turbines; the impacts pale in comparison with the emissions prevented through the displacement of fossil fuel power generation. It takes around two years to pay off the “embedded energy” in a solar panel; while the panel itself is likely to produce clean energy for up to 25 years, saving almost 250 tonnes of CO2 over its lifetime.

Will the Future Grid project have an impact on low socio-economic demographics, people in town camps, or remote communities?

In partnership with Territory Housing, the Alice Springs Future Grid installed 15 solar battery systems on public housing to ascertain the impact of public housing energy consumption behaviour into the Energy Grid.

It was recognised that solar has the effect of enabling those with the financial means to do so to reduce their power bills, while this project allowed these benefits to be shared with tenants. In addition, the Arid Lands Environment Centre led a Low-Socioeconomic study that presents baseline information on the challenges facing this section of the community in accessing direct benefits from renewable energy.

What happens to solar panels at the end of their life?

This is a subject of much discussion and study, and is even the focus of a current Australian Renewable Energy Agency (ARENA) funding opportunity. It does pose a looming waste management issue, with the design life of solar panels at 20 to 30 years, and many installed well over a decade ago. The International Renewable Energy Agency (IRENA) estimates there could be 60 to 78 million tons of photovoltaic panel waste accumulated globally by 2050. It also estimates the recyclable materials will be worth $15bn in recoverable value.

It is envisaged that recycling solar panels will create industry and employment opportunities, keep valuable resources out of landfill, help to retain rare elements, and prevent heavy metals leaching into the environment. There are a couple of companies working in this space in Australia.

What does the big BESS battery at Ron Goodin power station actually do?

The Battery Energy Storage System (BESS) in Alice Springs is designed to provide grid stability services. This is much needed, as the town has a high proportion of rooftop solar PV, which can create challenges in the grid during periods of high cloud coverage, requiring thermal generation to react as quickly as possible to pick up the slack. In these instances, the BESS can almost immediately support the grid while thermal generation ramps up or down. If it were to be used purely for storage, the battery would last about 40 minutes. Proportional to the size of the Alice Springs grid, it is the biggest battery in Australia. This perhaps illustrates why centralised battery storage alone isn’t a viable solution to support high renewable penetration in a town like Alice, just yet.

Why can’t we build a pumped hydro plant, using the Heavitree Range?

Alice Springs has a strong history of solar energy innovation and many smart minds have considered this idea. It is accepted that the volume of water required to build a large enough hydro plant is beyond what is feasible. A smaller plant could be built, but it would have no material value.

Any technology that relies upon water in Central Australia is naturally problematic because the region is arid and relies upon a finite source of groundwater. This is why hydrogen isn’t an ideal solution in this area of Australia.

Other considerations relating to ideas of this nature are native title and the Sacred Sites Act, governing the protection of the West MacDonnell ranges and other areas around Alice Springs. However, these cannot be considered as barriers given the absence of technical feasibility for this idea.

Why can’t we just put in a big battery?

Alice Springs is already home to a large-scale Battery Energy Storage System (BESS) owned by Territory Generation and installed at the Ron Goodin Power Station. The BESS was commissioned in 2018 and at the time was the largest battery, proportional to the grid it served, in Australia. The BESS is 5MW and cost about $8m. It is optimised for grid support services (such as inertia, as outlined elsewhere) and is not sufficient to support the grid in terms of energy storage. If optimised to provide energy storage rather than grid support the battery could service the energy needs of Alice Springs for no longer than 20 minutes.

The Roadmap to 2030 has considered where new battery energy storage systems could be placed and their functions. It is likely that at least three systems would be needed, at strategic locations around town to support the grid.

What factors make it more complicated to increase the amount of renewable energy in Alice Springs?

There are a number of major challenges. Firstly, voltage: in creating the power system it was always assumed that power would start at the generator and flow towards the consumer. Now we have ‘generators’ through rooftop solar PV installed at houses and businesses, which push power in the opposite direction when feeding into the grid. This has the effect of increasing the voltage in the system, causing unintended outcomes which can result in reduced quality of supply for consumers. The more energy we put in at a consumer level, the more significant voltage management becomes.

Another condition of a reliable energy systems is that enough inertia is maintained to cope with unplanned events, such as a cloud coming over and rapidly reducing solar generation, or perhaps someone driving into a power pole. Inertia is the capacity for an object to remain in motion. In traditional power systems spinning generators have provided inertia and thus an ability to resist disturbances, giving the system time to respond to changing conditions. One of the reasons Future Grid placed emphasis on the integration of household batteries into the network was because of their potential for providing virtual inertia in certain circumstances. The level to which we can increase the amount of solar in the system is limited by our ability to provide a mechanism to offset the required inertia.

Inertia and operational reserve (generation capacity that is online, controllable and ready to respond to meet demand) act like a shock absorber. The more renewables you add into the system, the bigger that shock absorber needs to be, which starts to become very expensive. So, the question is: are there other ways to provide that shock absorption into the system, such as batteries or other support mechanisms? This was part of what Future Grid was investigating.

Finally, a characteristic of the Alice Springs grid that differentiates it from many other grids is its isolation. Alice Springs doesn’t have anywhere else to which it can push surplus energy or draw upon additional energy when our network is under stress. There are plenty of isolated grids and stand-alone power systems servicing remote communities in Australia, but Alice Springs is an unusual size and regulated. This is unlike most other large grids, which link a variety of types of generation (such as coal, wind, hydro, solar) which can be adjusted to help maintain balance. A larger number of consumers is also helpful to maintain a stable system as traditional modes of generation struggle to operate at minimum loads. Alice Springs faces isolation, low loads, and fluctuating solar generation which makes it a challenging system to manage.

How much renewable energy is currently generated in Alice Springs?

The maximum output capacity of all residential DPV systems in Alice Springs is estimated to be 23 MW, and historical generation data suggests in the order of a 9% contribution to overall consumption. Distributed PV (DPV) and utility-scale Variable Renewable Energy (VRE) accounted for 13% contribution.

Of that 13%, the Uterne Solar Farm which is located to the south of Alice Springs town centre has a maximum output capacity of 3.8 MW, historical generation data suggests in the order of a 3 – 4% contribution to overall consumption.

Fossil fuel-based generation produced 87% of annual volume.

Why is the Future Grid project needed?

The story starts more than a decade ago when the question being asked was whether or not there would be interest and uptake of renewables. The underlying assumption was that the uptake would happen at levels which meant the core operation of the grid would remain largely the same. However, uptake of renewable energy technology in Alice Springs has been particularly strong, and today the system within which the generation and delivery of energy operates in Alice Springs - the government system, the technical system, the regulatory system – has been tailored to a set of responsibilities and outcomes which are no longer consistent with the likely direction of the future energy system. It doesn’t mean the system we have is wrong, it’s just not necessarily optimised for the future. As a consequence, the requirement for a systems-level project that considers how all these factors can best work together has emerged.

Alice Solar City (2008-2013) served to drive uptake of rooftop solar. Such is the community’s ongoing enthusiasm; we now need to enable the grid infrastructure to support the continued ability for the community to install solar. There have been locations in Australia, particularly WA, where solar installations have been brought to a halt (e.g. Broome) and a move to Distributed Energy Resources (DER) is underway to enable further rooftop solar installations (e.g. Carnarvon and Onslow). In mid-2021 it was revealed Onslow had become the largest town ever to be operated (for a total of 80 minutes) on 100% renewable energy, as part of the DER project run by Horizon Power. Horizon is a Project Partner of Alice Springs Future Grid, and the Future Grid team travelled to Perth to learn directly about Horizon’s technical trials.

Another aspect to consider is that many people talk about “the market” and how it can be used to drive change. However, the energy market is a subset of the power system; it’s not the whole system. The power system includes everything that sits around that market including technical standards that determine how things are done and the regulatory framework that sets out rights and responsibilities. That system is changing because technology is driving change in the roles and responsibilities of different entities. Future Grid was a systems project seeking to determine what is the right system for the future in Alice Springs.


Can’t find what you’re after? Send us a question!